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I. Introduction

THE paradox of Einstein, Podolsky and Rosen (1] was advanced a5 an argament thet quantum mechanics
could not be a complete theory but should be supplemented by additional variables. These additional vari-
ables were 1o regiore to the theory causality snd locality {21, In thiz sote that iden will be formulated
mathematically and shown to be mmphb!b with the statistical predictions of quantum mechanics. It is

m at the result of a measurement on one syatem kb be una[’ﬁ‘é!?g

bw“i Thme hal.le beeﬂ anmpm {3.] to u]mw that even without anch a sepamability or locality require-
ment no ‘*hidden variable' interpretstion of quantum mechanics is possible. These attempts have been
examined elsewhere [4] end found wanting. Moreover, a hidden variable interpretation of elementary quan=
tum theary [5] has been explicitly constructed, That particular interpretation has indeed a grossly non-
local structure. This is characteristic, acconding to the result to bt proved hee, of any such theory which
reproduces exactly the quantum mechsnical pﬂ:ﬂEi_"M_'l.S;.

1. Fermulotion

With the example advocated by Bohm and Abaronov [6], the EPR argument is the following, Conalder
# pair of spin one-half particles formed somehow in the singlet spln state and moving [reely in opposite
directions. Measurements can be made, say by Stem-Gerlach magnets, on selected components of the
spins &, and #,. If measurement of the compoaent &, - 8, where & Ig some unit vector, vields the value
+1 um. according lo quantam mechanics, measurement of &+ # must yield the value -1 and vice versa.
Now we make the hypothesis [2], and it seems one at least worh considering, that if the two measure-
ments are made al places :mﬂﬁI & from one amother the crientation of one magnet does not influsnee the
regult obtained with the other™ Since we can predict in advance the result of measuring any chosen compo-
neat of #,, by previously measuring the same component of &, , it follows that the result of any such
measurement must actually be %Imh&:ﬁs‘mw the initial guantum mechanical wave function does ot
determine the result of an individual mea t, this predetermination implies the possibility of a more
complete specification of the state.

Let this more complete specification be effected by means of parameters A. It is amatter of indiffer
ence in the following whether A denotes a single variable or a set, or even & set of functions, sd wiether
the variahles are discrete or continuous. However, we write &= if A were @ single continuons parameter.
The result A of measuring &, -3 is then determined by & and A, and the result & of measuring o b in the
same ingtance is determined by § and A, and
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Ala, 2 = t1; BIE, A = 21, i

The vital muumElﬂn [2] is hj:‘l_lz\.at the result B for pasticle 2 does not depend on the setling &, of the magnst

1f p{_.:ﬁl is the pmba'hlllly distribution of A then the expectation value of the product of the two com-
paneats o, . a4 and u', b is

Plah ‘ﬁapm Al ) BB (v

This should equal the quantum mechanical expectation value, which for the singlet state is

-

<acd oy Bbr=-a-B. 5]

But it will be shown that this is not possible,

Some might prefer a formulation in which the hidden variables fall into two sets, with A dependent on
one and # on the other; this possibility is contained in the above, since A stands for any number of vari-
ables and the dependences thereon of A and B are unrestricted. In a complete physical theory of the
type envisaged by Einstein, the hidden variables would have dynamical significance and laws of motion;
our A can then be thought of as initlal values of these varlables at some suitable instant.

. Mustration

The proof of the main result is quite simple. Before giving it, however, 8 number of illustrations may
serve Lo pot it in perspective,

Firstly, there is no difficulty in giving @ hidden variable account of spin measurements on a single
pa.rllcl.e Suppose we have a spin half particle in a pure spin state with polarization denoted by & unit
vector . Let the hlddl:u variable be (for example) a unit vector & with uniform w}bﬂ.hlli!;,r distribution
over the hemiaphere o p = I, Specify that the result of measurement of 8 component o ¢ & is

sign A: 28", e}

whete @' is a unit vector depending on & and ¢ in @ way to be specified, and the sign function iz 1o
=1 according to the gign of ils argument. Actually this leaves the result undetermined when A - & = 0,
but as the probability of this is zero we will not muke special prescriptions for it. Averaging over A the
expectation value i

- -

fcg-a»=1=28%, (=
where ' is the angle between #' and p. Suppose then that &' is obtained from @ by rotation towards p
until

Ll
R A (61

w
where ¥ is the angle between 3 and p. Then we have the desired result
<g-a>=rcasd @
S0 in this simple case there is no difficulty in the view that the result of every measurement is determingd

by the value of an extra variable, and that the statistical features of quantum mechanics acize because te
. value of this variable is unknown in individual instances,
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Secondly, there is no difficalty in reproducing, in the form (2}, the only features of (3) commonly used
in werbal discussions of this problem:

P{a a) = - Pla, -2) = -1 (8

PlaB)-0if a-b-0

For example, et & now be unit vector i, with uniform probability distribution over all directions, and take
Ala, }) - sign &8+ A | (ay
Bla, &) = —sign B3 )

This gives

- [ e (10}

"

where 8 is the angle between & and b, and (10} has the properties (8). For comparisgon, consider the re-
sult of a modified theory |6] in which the pure singlet state is replaced in the course of time by ap iso-
trople minture of product states; this gives the correlation funetion

}5;;.5 (11)

It is probably less easy, experimentally, to distingaish (10} from (3}, than (11} from {3}

Unlike (3}, the function (10) is not statiooary at the minimum value - 1(at & = 0. It will be seen
that this iz chamcteristic of functions of type (2.

Thirdly, and finally, there is no difficulty in reproducing the quantum mechanical correlation (3) if the
results A and B in (2) are allowed to depend on & and @ respectively as well as on & and b, For ex-
ample, replace & in (9) by & , obtzined from & by rotation towards & until

1-20 cnd,
i

where @' is the angle between a' and &. However, for given values of the hidden variables, the results
of meagurements with one magnet now depend on the setting of the distant magoet, which is just what we
wiould wish to avoid.

I¥. Contradiction

The main result will now be proved. Becouse p is a normalized probability distribution,
fmpm =1, (12)
and because of the properties (1), P in (2) cannot be legs than —1. It can reach —1 8t & = 5 only if
Al@, A) = ~B{&, A {13
except gt 8 set of points A of zero probability. Assuming this, (2) can be rewritten

Pla B - -ﬁﬁ.pm Ala, A} ALE, A). (14)
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It follows that © is another unit yector

Pla, B) -Pla, ©) = -ﬁmm [Ala, A) ALE, 0 =48, &) A(Z, Al
.ﬁa plA) Ala, ) A(B, A) [A(E, &) ALE, &) =1]

using (1}, whence

|P(a B) -P(a 3| sﬁmpm [1-A(B A) ALS A
The second teem on the right is P(5, 2), whence
1+ P332 |Plad - Pad (15}

Unless P is constant, the right hand side is in general of order |B-c| for small |E-2|, Thus P8 &)
cannot be stationary at the minimum value (=1 at & - &) and cannot equal the quantum mechanical
value (3).

Nor can the quanium mechanicel correlation (3) be arbitrarily closely spproximated by the form (7).
The formal proof of this may be set out as follows. We would not worry about failure of the approcimation
at isolated points, so let ua consider instead of (2) and {3} the functions

P(a %) and -2 3

where the bar denotes independent averaging of Pla) B') and -&' - B over vectors ' and B within spec
ified small angles of & and B, Suppose that for all 8 and B the difference 15 bounded by ¢

(PG B+ 3+ 8| S5¢ (16)

Then it will be shown that ¢ cannot be made arbitrarily small,
Suppose that for all & and b

la-B-a-8| 8 (17
Then from (16)
|P(@ B +a-Bl Se+ 8 {15)
From {2
Pia B - _/:ra.;m Al A BB, &) (1)
where
|A(E, N | S1 and | BB 0|51 (20}
From (18) and {19), with a = &,
dAplh) (A, M BB, A + U S+ b (21

From (19
P{a. B) - P& @ -ﬁ:.pm [A(3, &) B(B, ) - A(a, &) BIE, Al
-ﬁapm A, A B N (14 A A BE N
-_/:r.xpm Ala, A BI(E A [1+ ALB, &) BE, 2]
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(18}

{19}
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Using (20) then i
| Pia B -Pia 3 f_-'ﬁ.mm [1 + A, &) BIZ, AN
+ﬁﬂ.p'..i.'l (1 + ALB, &) BB, A
Then using {19} and 21)
|Pa B -P@a | 21+ PEDress
Finally, using (18],
jare =8B -2+ B E1-8-c4 2+ B
ar
dle L B Z|@ve=avh] 4 bog =1 (223
Toke forexample 8- ¢ = 0, @+ b = 8- ¢ = 1/4/3 Then
dle+ B2 T — 1

Therefore, for small finite &, ¢ connol be arbitrarily small.
Thus, the quantum mechanical expectation value cannot be represented, either aceurately of arbitear-
ily elosely, in the form (I

V. Generalization

The example considered above has the advantage that it requires little imagination to envisage the
measurements involved sctually being made. In & more formal way, assuming (7] thet any Hermitian oper-
siof with a complete set of eigenstates is an ‘‘observable™, the result is easily extended to other syatems.
If the two systems have state spaces of dimensionality greater than 2 we can always consider two dimen-
gional subspaces and define, in thel: direct product, operators &, and F, formally annlogous to thoas
used above and which are zem for states outside the product subspace, Then for at least one quantum
mechanical state. the "“singlet’ state in the combined subspaces, the statistical predictions of quanfum
mechanics are incompatible with separable predelermination.

Conclusion

A8 At i o, S b L

m::m: statisteal predictions, thete must be a mwhﬂnns_uhmmjhtﬁg-
g of O mEasuring device can inilueace the reading of another instrament, however jemate. Moreover,
The signal involved must propagate instantanecusly, so that such & theory could not be Lorentz invariant.

Of course, the sitoation is different if the quﬂntum mechanical predictions are of limiled validity.
Conceivably they might apply only to experiments in which the settings of the instruments ane mnd: suffi-
ciently in advance to allow them to reach some mutual rapport by exchange of signals with velocity less
than or equal to that of light. In that connection, experiments of the type proposed by Bohm and Aharonow
[6]. in which the zettings are chanped during the flight of the particles, are crucial.

I am indebted to Drs. M. Bander and |. K. Perring for very useful discussions of this problem. The
first draft of the paper waz written during a stay at Brandeis University; [ am indebted fo collpagues there
and @ the University of Wisconsin for their interest and hosprialiiy.
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